Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            We search for the rare decay in a sample of electron-positron collisions at the resonance collected with the Belle II detector at the SuperKEKB collider. We use the inclusive properties of the accompanying meson in events to suppress background from other decays of the signal candidate and light-quark pair production. We validate the measurement with an auxiliary analysis based on a conventional hadronic reconstruction of the accompanying meson. For background suppression, we exploit distinct signal features using machine learning methods tuned with simulated data. The signal-reconstruction efficiency and background suppression are validated through various control channels. The branching fraction is extracted in a maximum likelihood fit. Our inclusive and hadronic analyses yield consistent results for the branching fraction of and , respectively. Combining the results, we determine the branching fraction of the decay to be , providing the first evidence for this decay at 3.5 standard deviations. The combined result is 2.7 standard deviations above the standard model expectation. Published by the American Physical Society2024more » « less
- 
            We report a measurement of decay-time-dependent charge-parity ( ) asymmetries in decays. We use pairs collected at the resonance with the Belle II detector at the SuperKEKB asymmetric-energy electron-positron collider. We reconstruct 220 signal events and extract the -violating parameters and from a fit to the distribution of the decay-time difference between the two mesons. The resulting confidence region is consistent with previous measurements in and decays and with predictions based on the standard model. Published by the American Physical Society2024more » « less
- 
            A<sc>bstract</sc> We report results from a study ofB±→ DK±decays followed byDdecaying to theCP-even final stateK+K−and CP-odd final state$$ {K}_S^0{\pi}^0 $$ , whereDis an admixture ofD0and$$ {\overline{D}}^0 $$ states. These decays are sensitive to the Cabibbo-Kobayashi-Maskawa unitarity-triangle angleϕ3. The results are based on a combined analysis of the final data set of 772×106$$ B\overline{B} $$ pairs collected by the Belle experiment and a data set of 198×106$$ B\overline{B} $$ pairs collected by the Belle II experiment, both in electron-positron collisions at the Υ(4S) resonance. We measure the CP asymmetries to be$$ \mathcal{A} $$ CP+= (+12.5±5.8±1.4)% and$$ \mathcal{A} $$ CP−= (−16.7±5.7±0.6)%, and the ratios of branching fractions to be$$ \mathcal{R} $$ CP+= 1.164±0.081±0.036 and$$ \mathcal{R} $$ CP−= 1.151±0.074±0.019. The first contribution to the uncertainties is statistical, and the second is systematic. The asymmetries$$ \mathcal{A} $$ CP+and$$ \mathcal{A} $$ CP−have similar magnitudes and opposite signs; their difference corresponds to 3.5 standard deviations. From these values we calculate 68.3% confidence intervals of (8.5°<ϕ3< 16.5°) or (84.5°<ϕ3< 95.5°) or (163.3°<ϕ3< 171.5°) and 0.321 <rB< 0.465.more » « less
- 
            A<sc>bstract</sc> We measureCPasymmetries and branching-fraction ratios forB±→ DK±andDπ±decays withD →$$ {K}_{\textrm{S}}^0 $$ K±π∓, whereDis a superposition ofD0and$$ \overline{D} $$ 0. We use the full data set of the Belle experiment, containing 772×106$$ B\overline{B} $$ pairs, and data from the Belle II experiment, containing 387 × 106$$ B\overline{B} $$ pairs, both collected in electron-positron collisions at the Υ(4S) resonance. Our results provide model-independent information on the unitarity triangle angleϕ3.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
